Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37871021

RESUMO

In this study, some confusing points about electron film dosimetry using white polystyrene suggested by international protocols were verified using a clinical linear accelerator (LINAC). According to international protocol recommendations, ionometric measurements and film dosimetry were performed on an SP34 slab phantom at various electron energies. Scaling factor analysis using ionometric measurements yielded a depth scaling factor of 0.923 and a fluence scaling factor of 1.019 at an electron beam energy of <10 MeV (i.e., R50 < 4.0 g/cm2). It was confirmed that the water-equivalent characteristics were similar because they have values similar to white polystyrene (i.e., depth scaling factor of 0.922 and fluence scaling factor of 1.019) presented in international protocols. Furthermore, percentage depth dose (PDD) curve analysis using film dosimetry showed that when the density thickness of the SP34 slab phantom was assumed to be water-equivalent, it was found to be most similar to the PDD curve measured using an ionization chamber in water as a reference medium. Therefore, we proved that the international protocol recommendation that no correction for measured depth dose is required means that no scaling factor correction for the plastic phantom is necessary. This study confirmed two confusing points that could occur while determining beam characteristics using electron film dosimetry, and it is expected to be used as basic data for future research on clinical LINACs.


Assuntos
Dosimetria Fotográfica , Poliestirenos , Dosimetria Fotográfica/métodos , Aceleradores de Partículas , Radioterapia de Alta Energia/métodos , Imagens de Fantasmas , Água , Radiometria/métodos
2.
Med Phys ; 50(6): 3816-3824, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36700450

RESUMO

BACKGROUND: The machine-specific reference (msr) correction factors ( k Q msr , Q 0 f msr , f ref $k_{{Q_{{\rm{msr}}}},\;{Q_0}}^{{f_{{\rm{msr}}}},{f_{{\rm{ref}}}}}$ ) were introduced in International Atomic Energy Agency (IAEA) Technical Report Series 483 (TRS-483) for reference dosimetry of small fields. Several correction factor sets exist for a Leksell Gamma Knife (GK) Perfexion or Icon. Nevertheless, experiments have not rigorously validated the correction factors from different studies. PURPOSE: This study aimed to assess the role and accuracy of k Q msr , Q 0 f msr , f ref $k_{{Q_{{\rm{msr}}}},\;{Q_0}}^{{f_{{\rm{msr}}}},{f_{{\rm{ref}}}}}$ values in determining the absorbed dose rates to water in the reference dosimetry of Gamma Knife. METHODS: The dose rates in the 16 mm collimator field of a GK were determined following the international code of practices with three ionization chambers: PTW T31010, PTW T31016 (PTW Freiberg GmbH, New York, NY), and Exradin A16 (Standard Imaging, Inc., Middleton, WI). A chamber was placed at the center of a solid water phantom (Elekta AB, Stockholm, Sweden) using a detector-specific insert. The reference point of the ionization chamber was confirmed using cone-beam CT images. Consistency checks were repeated five times at a GK site and performed once at seven GK sites. Correction factors from six simulations reported in previous studies were employed. Variations in the dose rates and relative dose rates before and after applying the k Q m s r , Q 0 f m s r , f r e f $k_{{Q_{msr}},\;{Q_0}}^{{f_{msr}},{f_{ref}}}$ were statistically compared. RESULTS: The standard deviation of the dose rates measured by the three chambers decreased significantly after any correction method was applied (p = 0.000). When the correction factors of all studies were averaged, the standard deviation was reduced significantly more than when any single correction method was applied (p ≤ 0.030), except for the IAEA TRS-483 correction factors (p = 0.148). Before any correction was applied, there were statistically significant differences among the relative dose rates measured by the three chambers (p = 0.000). None of the single correction methods could remove the differences among the ionization chambers (p ≤ 0.038). After TRS-483 correction, the dose rate of Exradin A16 differed from those of the other two chambers (p ≤ 0.025). After the averaged factors were applied, there were no statistically significant differences between any pairs of chambers according to Scheffe's post hoc analyses (p ≥ 0.051); however, PTW T31010 differed from PTW 31016 according to Tukey's HSD analyses (p = 0.040). CONCLUSION: The k Q msr , Q 0 f msr , f ref $k_{{Q_{{\rm{msr}}}},\;{Q_0}}^{{f_{{\rm{msr}}}},{f_{{\rm{ref}}}}}$ significantly reduced variations in the dose rates measured by the three ionization chambers. The mean correction factors of the six simulations produced the most consistent results, but this finding was not explicitly proven in the statistical analyses.


Assuntos
Radiocirurgia , Radiocirurgia/métodos , Radiometria/métodos , Imagens de Fantasmas , Água , Agências Internacionais
3.
Rev Sci Instrum ; 91(2): 023323, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113458

RESUMO

Accelerator Based Neutron Sources (ABNS) have been studied for their utility in materials research as well as for boron neutron captured therapy. By making significant efforts to study the (p,n) and (d,n) nuclear reactions, the specifications of the accelerator system have been determined. In this paper, we compare the design results for two types of radio frequency quadrupole (RFQ) accelerators to provide proton and deuteron beams, respectively. Both systems consist of an electron cyclotron resonance (ECR) ion source, a low-energy beam transport system, an RFQ accelerator, a medium-energy beam transport system, a Be target, and a moderator system. In order to achieve a compact accelerator system at a reasonable cost, different requirements must be applied to the design of RFQ accelerators. The proton RFQ has been designed with an operation frequency of 352 MHz, up to 4 MeV acceleration, 10 mA beam intensity, and a continuous-wave (CW) operation mode to achieve 0.84 × 109 n/(s/cm2) of neutron production. However, the deuteron RFQ has been designed with an operation frequency of 200 MHz, up to 2.5 MeV acceleration, 15 mA of beam intensity, and a CW operation mode to achieve 1.02 × 109 n/(s/cm2) of neutron production. In this paper, we describe the merit of the deuteron based neutron source by comparing two types of the RFQ accelerators for proton and deuteron beams including the common system of the ECR ion source and Be target in detail.

4.
Rev Sci Instrum ; 91(1): 013324, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012613

RESUMO

Radioactive ion beams produced using the isotope separation on-line method in the Rare isotope Accelerator complex for ON-line (RAON) experiment are to be delivered with a beam emittance of around 3 π mm mrad, an energy spread of less than 10 eV, and a short beam bunch width of around 10 µs to meet the requirements of an electron beam ion source charge breeder. A radio frequency quadrupole cooler buncher (RFQ-CB) will be used to meet the beam quality requirements mentioned above. Our target bunching capacity of RFQ-CB is 108 ions/bunch for various ion species. Such a high bunching capacity requires an RF amplitude of ∼3 kV and a frequency range of 1.5-4.5 MHz in our RFQ-CB design. We designed and tested the prototype RF system composed of a helical resonator, a high-power RF amplifier, and high-voltage probes. To reduce heat load to the high voltage probes, we employed vacuum capacitors serially connected to the ends of helical resonators. In the experiment, we confirmed that our 4.5-µH helical resonators made of a 12-mm copper tube and variable vacuum capacitor with a capacitance range of 120-1120 pF can produce required voltages and frequencies using a 100-W RF amplifier. As a result, with 2.5-W RF output power, we obtained the maximum voltage amplitude of 1 kV at 4.5 MHz, which is equivalent to 6.4 kV with 100-W RF output power.

5.
Rev Sci Instrum ; 87(2): 02A713, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931931

RESUMO

The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

6.
Rev Sci Instrum ; 87(2): 02A717, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931935

RESUMO

The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

7.
Rev Sci Instrum ; 87(2): 02B706, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932069

RESUMO

The gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute. The objective of the first stage of the project is the generation of argon beams with a GCIB system [A. Kirkpatrick, Nucl. Instrum. Methods Phys. Res., Sect. B 206, 830-837 (2003)] that consists of a nozzle, skimmer, ionizer, acceleration tube, separation system, transport system, and target. The Wien filter directs the selected cluster beam to the target system by exploiting the velocity difference of the generated particles from GCIB. In this paper, we present the theoretical modeling and three-dimensional electromagnetic analysis of the Wien filter, which can separate Ar(+) 2500 clusters from Ar(+) 2400 to Ar(+) 2600 clusters with a 1-mm collimator.

8.
Rev Sci Instrum ; 87(2): 02B933, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932105

RESUMO

The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...